Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data

نویسندگان

  • Tyler Hunt
  • Zhiting Zhu
  • Yuanzhong Xu
  • Simon Peter
  • Emmett Witchel
چکیده

Users of modern data-processing services such as tax preparation or genomic screening are forced to trust them with data that the users wish to keep secret. Ryoan protects secret data while it is processed by services that the data owner does not trust. Accomplishing this goal in a distributed setting is difficult because the user has no control over the service providers or the computational platform. Confining code to prevent it from leaking secrets is notoriously difficult, but Ryoan benefits from new hardware and a request-oriented data model. Ryoan provides a distributed sandbox, leveraging hardware enclaves (e.g., Intel’s software guard extensions (SGX) [15]) to protect sandbox instances from potentially malicious computing platforms. The protected sandbox instances confine untrusted data-processing modules to prevent leakage of the user’s input data. Ryoan is designed for a request-oriented data model, where confined modules only process input once and do not persist state about the input. We present the design and prototype implementation of Ryoan and evaluate it on a series of challenging problems including email filtering, heath analysis, image processing and machine translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating indexes from data: a distributed scheme for secure database outsourcing

Database outsourcing is an idea to eliminate the burden of database management from organizations. Since data is a critical asset of organizations, preserving its privacy from outside adversary and untrusted server should be warranted. In this paper, we present a distributed scheme based on storing shares of data on different servers and separating indexes from data on a distinct server. Shamir...

متن کامل

Chiron: Privacy-preserving Machine Learning as a Service

Major cloud operators offer machine learning (ML) as a service, enabling customers who have the data but not ML expertise or infrastructure to train predictive models on this data. Existing ML-as-a-service platforms require users to reveal all training data to the service operator. We design, implement, and evaluate Chiron, a system for privacy-preserving machine learning as a service. First, C...

متن کامل

Privacy-Preserving Secret Shared Computations using MapReduce

Data outsourcing allows data owners to keep their data at untrusted clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for trusted private clouds. This paper presents algorithms for data outsourcing based on Shamir’s secret-sharing scheme and for executing privacy-p...

متن کامل

A Platform for Expressive and Secure Data Sharing with Untrusted Third Parties

Today, third-party applications provide a variety of rich services to smartphone users. There are compelling reasons to share personal data with third parties, such as social networking applications, but the benefits of sharing data must be balanced against the corresponding risks to personal privacy. Prior work has proposed personal data vaults to separate the capturing and sharing of data. We...

متن کامل

SpanDex: Secure Password Tracking for Android

This paper presents SpanDex, a set of extensions to Android’s Dalvik virtual machine that ensures apps do not leak users’ passwords. The primary technical challenge addressed by SpanDex is precise, sound, and efficient handling of implicit information flows (e.g., information transferred by a program’s control flow). SpanDex handles implicit flows by borrowing techniques from symbolic execution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016